Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Claudin-15 (CLDN15) molecules form channels that directly regulate cation and water transport. In the gastrointestinal tract, this transport indirectly impacts nutrient absorption. However, the mechanisms governing ion transport through these channels remain poorly understood. We addressed this question by building on our previous cell culture studies and all atom molecular dynamic simulation model of CLDN15. By mutating D55 to a bulkier glutamic acid (E) or neutral amino acid asparagine (N), our in vitro measurements showed that the D55E mutation decreased charge selectivity and favored small ion permeability, while the D55N mutation led to reduced charge selectivity without markedly altering size selectivity. By establishing a simplified (reduced) CLDN15 molecular dynamics model that excludes non-essential transmembrane regions, we were able to probe how D55 modified cation dehydration, charge interaction, and permeability. These results provide novel insight into organization of the CLDN15 selectivity filter and suggests that D55 plays a dual role in shaping both electrostatic and steric properties of the pore, but its electrostatic role is more prominent in determining CLDN15 cation permeability. This knowledge can be used toward the development of effective strategies to modulate CLDN15 function. The experimental approach established can be further extended to study the function of other claudin channels. Together, these advancements will help us to modulate tight junctions to promote human health.more » « lessFree, publicly-accessible full text available December 18, 2026
-
Double- and single-differential cross sections for inclusive charged-current -nucleus scattering are reported for the kinematic domain 0 to in three-momentum transfer and 0 to 2 GeV in available energy, at a mean energy of 1.86 GeV. The measurements are based on an estimated 995,760 charged-current (CC) interactions in the scintillator medium of the NOvA Near Detector. The subdomain populated by 2-particle-2-hole (2p2h) reactions is identified by the cross section excess relative to predictions for -nucleus scattering that are constrained by a data control sample. Models for 2-particle-2-hole processes are rated by comparisons of the predicted-versus-measured CC inclusive cross section over the full phase space and in the restricted subdomain. Shortfalls are observed in neutrino generator predictions obtained using the theory-based València and SuSAv2 2p2h models. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
null (Ed.)Scientists are increasingly motivated to engage the public, particularly those who do not or cannot access traditional science education opportunities. Communication researchers have identified shortcomings of the deficit model approach, which assumes that skepticism toward science is based on a lack of information or scientific literacy, and encourage scientists to facilitate open-minded exchange with the public. We describe an ambassador approach, to develop a scientist’s impact identity, which integrates his or her research, personal interests and experiences to achieve societal impacts. The scientist identifies a community or focal group to engage, on the basis of his or her impact identity, learns about that group, and promotes inclusion of all group members by engaging in venues in which that group naturally gathers, rather than in traditional education settings. Focal group members stated that scientists communicated effectively and were responsive to participant questions and ideas. Scientists reported professional and personal benefits from this approach.more » « less
-
We report a search for neutrino oscillations to sterile neutrinos under a model with three active and one sterile neutrinos ( model). This analysis uses the NOvA detectors exposed to the NuMI beam, running in neutrino mode. The data exposure, protons on target, doubles that previously analyzed by NOvA, and the analysis is the first to use charged-current interactions in conjunction with neutral-current interactions. Neutrino samples in the near and far detectors are fitted simultaneously, enabling the search to be carried out over a range extending 2 (3) orders of magnitude above (below) . NOvA finds no evidence for active-to-sterile neutrino oscillations under the model at 90% confidence level. New limits are reported in multiple regions of parameter space, excluding some regions currently allowed by IceCube at 90% confidence level. We additionally set the most stringent limits for anomalous appearance for . Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.more » « lessFree, publicly-accessible full text available June 1, 2026
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
An official website of the United States government
